Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: EXPONENTIALFUNKTION)

Es wurden 171 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Exponentialfunktion: Ableitung, Beispiel 6 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009409" }

  • Exponentialfunktion: Ableitung, Beispiel 5 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009408" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 5 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009433" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 4 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009393" }

  • Aus dem Schaubild einer Exponentialfunktion die Funktionsgleichung erstellen, Beispiel 2 | A.41.10.

    Normalerweise hat man die gesuchte Funktion in Abhängigkeit von einem (oder mehreren) Parameter gegeben. Man sucht ein paar Punkte, die man gut aus dem Schaubild ablesen kann und setzt die in die Funktion ein. Eventuell man das auch mit Asymptoten machen. Damit sollte man die Parameter erhalten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009445" }

  • Exponentialfunktion: Nullstellen berechnen | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009389" }

  • Schaubild einer Exponentialfunktion erstellen, Beispiel 3 | A.41.09

    Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009442" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 1 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009390" }

  • Aus dem Schaubild einer Exponentialfunktion die Funktionsgleichung erstellen | A.41.10.

    Normalerweise hat man die gesuchte Funktion in Abhängigkeit von einem (oder mehreren) Parameter gegeben. Man sucht ein paar Punkte, die man gut aus dem Schaubild ablesen kann und setzt die in die Funktion ein. Eventuell man das auch mit Asymptoten machen. Damit sollte man die Parameter erhalten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009443" }

  • Exponentialfunktion: Ableitung, Beispiel 3 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009406" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite