Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: DREHUNG)

Es wurden 41 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Quantenphysik multimedial: Spektrum des Drehoperators

    In diesem Video wird über das Spektrum von Eigenzuständen des Drehoperators diskutiert.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_001412" }

  • Willi Winkel

    Das österreichische Online-Angebot ʺWilli Winkelʺ bringt Lernenden der Klassen 5 und 6 das Thema Winkel nahe. Inhaltlich spannt sich der Bogen der mehrfach preisgekrönten Lernumgebung über acht Themen von einer ersten Begriffsbildung bis hin zu den Themen Neben- und Scheitelwinkel. Mitentwickler Christian Nosko stellt Ihnen den kostenfreien E-Learning-Kurs ...

    Details  
    { "HE": "DE:HE:329673" }

  • Winkelsumme im Dreieck und Viereck mit GEONExT

    Die Schülerinnen und Schüler entdecken mithilfe dynamischer Mathematik in selbstständiger und kooperativer Arbeit die Winkelsumme im Dreieck und im Viereck. Die technische Grundlage dafür bietet das kostenlose Programm GEONExT. Es kann vielfältig und flexibel genutzt werden, um geometrische Gesetzmäßigkeiten und Zusammenhänge zu verdeutlichen. (Klasse ...

    Details  
    { "HE": "DE:HE:329672" }

  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

  • Affine Abbildung; Eigenvektor | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }


  • Details  

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite