Ergebnis der Suche (44)

Ergebnis der Suche nach: (Freitext: ABLEITUNG)

Es wurden 465 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 36 37 38 39 40 41 42 43 44 45 46 47 Eine Seite vor Zur letzten Seite

Treffer:
431 bis 440
  • Definition von stetig und differenzierbar, Beispiel 4 | A.25.0.3

    „Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009171" }

  • Thromboseprophylaxe

    Die Unterrichtseinheit befasst sich zunächst mit der Ableitung der Begrifflichkeit "Thrombose" und führt über die Thromboseentstehung zu den prophylaktischen Maßnahmen. Die konkreten Maßnahmen erarbeiten die Lernenden im Rahmen einer Gruppenarbeit. Mittels interaktiver Übungen erarbeiten die Lernenden die Mechanismen des venösen Rückstroms und überprüfen ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1007786" }

  • Mit Newton-Verfahren Nullstellen bestimmen | A.32.02

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009360" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009704" }

  • Thromboseprophylaxe: interaktives Begleitmaterial

    In diesem Arbeitsmaterial finden Sie die die Unterrichtseinheit "Thromboseprophylaxe" begleitendenden interaktiven Übungen. Insgesamt stehen den Lernenden zwei interaktive Übungen zur Verfügung, um das Gelernte zu festigen. Es handelt sich um ein Buchstaben- und ein Kreuzworträtsel.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_002220" }

  • Differentialgleichungen mit Ableitungsübungen für den Mathe-Unterricht

    In der Einheit "Differentialgleichungen" betrachten und interpretieren die Lernenden die Zusammenhänge zwischen Werten und deren Veränderungen in Gleichungen. Bei den aufzustellenden Funktionstermen und Übungsaufgaben stehen Bezüge zur Realität im Mittelpunkt, um Ableitungsregeln zu üben und die Bedeutung von Ableitungen besser zu verstehen.

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1007472" }

  • Vom Differenzen- zum Differenzialquotient

    In dieser Unterrichtseinheit zum Thema Differenzialquotient wird die erste Ableitung mithilfe eines Java-Applets eingeführt. Die Verknüpfung zwischen grafischer Anschauung und Rechnung führt zu einem sicheren Umgang mit dem Differenzialquotienten.

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1000533" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009082" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 3 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009085" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 1 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009083" }

Seite:
Zur ersten Seite Eine Seite zurück 36 37 38 39 40 41 42 43 44 45 46 47 Eine Seite vor Zur letzten Seite