Steigung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (4)

Ergebnis der Suche nach: (Freitext: STEIGUNG)

Es wurden 167 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Geraden einzeichnen, Beispiel 3 | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008341" }

  • Geraden einzeichnen, Beispiel 4 | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008342" }

  • Geraden einzeichnen | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008338" }

  • Geraden einzeichnen, Beispiel 6 | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008344" }

  • Geradengleichung der Höhe berechnen | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008407" }

  • Steigung einer Geraden - mit GeoGebra entwickeln

    Eine differenzierte Übungsumgebung mit dynamischen Arbeitsblättern schafft eine wichtige Grundlage für das Verständnis linearer Funktionen (8. und 9. Klasse).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Arbeitsblatt (druckbar); Mindestalter: 10; Höchstalter: 14

    Details  
    { "DBS": "DE:DBS:53142" }

  • Steigung einer Geraden mit GeoGebra

    Die Steigung einer Geraden ist eine der zentralen Grundlagen für das Verständnis linearer Funktionen. Ein an der Erfahrungswelt der Schülerinnen und Schüler orientierter Zugang und eine differenzierte Übungsumgebung mit interaktiven dynamischen Arbeitsblättern können einen wertvollen Beitrag dafür leisten. Die Besonderheit der Übungen mit interaktiven dynamischen ...

    Details  
    { "HE": "DE:HE:329619" }

  • Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 7 | A.02.09

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für „m“, „x0“ und „y0“ in die Punkt-Steigungs-Form (PSF) ein und löst nach „y“ auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008392" }

  • Geradengleichung aus P und m über Normalform bestimmen, Beispiel 4 | A.02.08

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für „m“ und die Koordinaten des Punktes für „x“ und „y“ in die Gleichung „y=m*x+b“ einsetzen um „b“ zu bestimmen. Nun setzt man die Werte für „m“ und „b“ wieder ein und hat die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008381" }

  • Geradengleichung aus P und m über Normalform bestimmen | A.02.08

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für „m“ und die Koordinaten des Punktes für „x“ und „y“ in die Gleichung „y=m*x+b“ einsetzen um „b“ zu bestimmen. Nun setzt man die Werte für „m“ und „b“ wieder ein und hat die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008377" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite