Nullstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (9)

Ergebnis der Suche nach: (Freitext: NULLSTELLE)

Es wurden 219 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Polynome über Nullstellen aufstellen, Beispiel 3 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009635" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 4 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009393" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 1 | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009502" }

  • Schaubild einer Wurzelfunktion erstellen, Beispiel 2 | A.45.07

    Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009608" }

  • Polynome über Nullstellen aufstellen, Beispiel 1 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009633" }

  • Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 3 | A.45.09

    Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009617" }

  • Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 3 | A.44.09

    Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009579" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 5 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009401" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 2 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009391" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 3 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009392" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite