F��rderschule - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (11)

Ergebnis der Suche nach: (Freitext: F��RDERSCHULE)

Es wurden 593 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 3 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009714" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009478" }

  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 2 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009419" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 1 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009712" }

  • Digitalisierung in der Grundbildung. Didaktische Empfehlungen für einen gelingenden Unterricht

    Die Praxishilfe soll Leitende und Lehrkräfte anregen, digitale Medien verstärkt in der Grundbildung einzusetzen und Kursangebote für eine digitale Grundbildung aufzulegen. Zudem fasst sie Überlegungen im Hinblick auf die Entwicklung eines didaktischen Rahmens zusammen. Die Publikation entstand im Rahmen des Projekts Lernen lernen digital und literal (DIGIalpha) (2021-2022) ...

    Details  
    { "DBS": "DE:DBS:1687" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 4 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009480" }

  • Funktionen verschieben: so wird’s gemacht, Beispiel 6 | A.23.01

    Wie kann man Funktion verschieben? Bei einer Verschiebung um „a“ nach links, ersetzt man in der Funktion jeden Buchstaben „x“ durch „x+a“. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man „x“ durch „x-a“ ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert „b“ nach oben oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009103" }

  • Exponentialfunktion integrieren bzw. aufleiten | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009417" }

  • Funktionen verschieben: so wird’s gemacht, Beispiel 5 | A.23.01

    Wie kann man Funktion verschieben? Bei einer Verschiebung um „a“ nach links, ersetzt man in der Funktion jeden Buchstaben „x“ durch „x+a“. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man „x“ durch „x-a“ ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert „b“ nach oben oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009102" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008631" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite