Dreieck - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (22)

Ergebnis der Suche nach: (Freitext: DREIECK)

Es wurden 254 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 15 16 17 18 19 20 21 22 23 24 25 26 Eine Seite vor Zur letzten Seite

Treffer:
211 bis 220
  • Fläche und Flächeninhalt eines Vierecks berechnen | A.03.05

    Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008454" }

  • Tangens und arctan und wie man richtig damit rechnet | T.01.06

    Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010299" }

  • Fläche und Flächeninhalt eines Vierecks berechnen, Beispiel 2 | A.03.05

    Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008456" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010319" }

  • Sinus und arcsin und wie man richtig damit rechnet, Beispiel 1 | T.01.04

    Der Sinus ist eine sogenannte Winkelfunktion. Der Sinus ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Hypotenuse (H) nennt man Arkussinus (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010290" }

  • Mittelsenkrechte berechnen, Beispiel 2 | A.02.14

    Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008413" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010321" }

  • Tangens und arctan und wie man richtig damit rechnet; Beispiel 4 | T.01.06

    Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010303" }

  • Punkt im Inneren eines Dreiecks oder Parallelogramms berechnen, Beispiel 4 | V.05.05

    Liegt ein Punkt im Inneren eines Parallelogramms, stellt man vom Parallelogramm eine Ebenengleichung in Parameterform auf. Nun macht man eine Punktprobe. Beide Parameter müssen zwischen 0 und 1 liegen. Soll der Punkt innen im Dreiecks liegen, stellt man ebenfalls eine Ebene auf und macht die Punktprobe. Diesmal muss die SUMME der Parameter zwischen 0 und 1 liegen. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010513" }

  • Sinus und arcsin und wie man richtig damit rechnet, Beispiel 4 | T.01.04

    Der Sinus ist eine sogenannte Winkelfunktion. Der Sinus ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Hypotenuse (H) nennt man Arkussinus (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010293" }

Seite:
Zur ersten Seite Eine Seite zurück 15 16 17 18 19 20 21 22 23 24 25 26 Eine Seite vor Zur letzten Seite