Ergebnis der Suche (12)

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: "FORMEL (MATHEMATIK)")

Es wurden 582 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • p-q-Formel, Mitternachtsformel, Beispiel 5 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008712" }

  • Wurzel der Wurzel: Wie rechnet man, wenn eine Wurzel unter der Wurzel steht? | B.04.03

    Hat man eine Wurzel unter der Wurzel (verschachtelte Wurzeln), ist das nicht immer einfach. Wenn unter der großen Wurzel nur Punktrechnungen stehen, ist alles in Butter. Man schreibt jede Wurzel als Potenz um und wendet die Potenzregel an. Sind unter der großen Wurzel auch Strichrechnungen, nutzt vermutlich auch alles Umschreiben nichts mehr, vermutlich lässt sich kaum was ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009874" }

  • Dreiecksfläche berechnen, Beispiel 1 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008975" }

  • Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 2 | A.55.01

    Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009770" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 1 | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009624" }

  • Substitution von Termen in Gleichungen, Beispiel 1 | A.12.06

    Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008721" }

  • Integralfunktion bestimmen, Beispiel 2 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008985" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 4 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009093" }

  • Steckbriefaufgaben zu Parabel mit Nullstellen, Beispiel 3 | A.04.18

    Hat man von einer Parabel beide Nullstellen gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so gibt es zwei mögliche Vorgehensweisen. Die komplizierte Methode wäre, die Nullstellen als normale Punkte zu betrachten und dann ein Gleichungssystem aufzustellen (siehe A.04.15 oder A.04.17). Die geschicktere Methode wäre die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008540" }

  • Normale außerhalb, Beispiel 3 | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008895" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite