Ergebnis der Suche (55)

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: E-LEARNING)

Es wurden 1598 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 49 50 51 52 53 54 55 56 57 58 59 60 Eine Seite vor Zur letzten Seite

Treffer:
541 bis 550
  • Wurzeln multiplizieren: so berechnet man ein Wurzelprodukt, Beispiel 3 | B.04.01

    Wenn man Wurzeln miteinander multipliziert, so nennt man das „Wurzelprodukt“. Das ist sehr schön. Man schreibt eigentlich nur die Wurzeln um (als Hochzahl hat man dann eben Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009868" }

  • Integralfunktion bestimmen, Beispiel 5 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008988" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 1 | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008443" }

  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? Beispiel 3 | A.30.02

    Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009308" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 1 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008908" }

  • Substitution von Termen in Gleichungen | A.12.06

    Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008720" }

  • Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 2 | A.21.03

    Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009043" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 3 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008931" }

  • So kann man einen schwierigen Logarithmus berechnen, Beispiel 2 | B.06.04

    Für besonders hässliche Logarithmenaufgaben braucht man Logarithmenregeln, Potenzregeln, binomische Formeln, ein dreihöckriges Kamel und sonst noch ein paar Tricks.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009909" }

  • Lineares Wachstum berechnen, Beispiel 2 | A.30.01

    Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009304" }

Seite:
Zur ersten Seite Eine Seite zurück 49 50 51 52 53 54 55 56 57 58 59 60 Eine Seite vor Zur letzten Seite