Ergebnis der Suche (13)

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: ANALYSIS)

Es wurden 1327 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite

Treffer:
121 bis 130
  • Logarithmusfunktion: Gleichungen lösen, Beispiel 2 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009556" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 2 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009761" }

  • Logarithmusfunktion: Stammfunktion bestimmen | A.44.04

    Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009550" }

  • Taylorpolynom; Taylorreihe; Taylorentwicklung, Beispiel 2 | A.32.01

    Die Taylorentwicklung macht aus einer komplizierten und hässlichen Funktion ein „einfaches“ Polynom, das Taylorpolynom, die Taylorreihe oder einfach nur Näherungspolynom. Natürlich hat das Ganze einen Haken. Um eine e-Funktion oder eine Sinus-Funktion oder etc.. in ein „einfaches“ Polynom umzuwandeln, müsste dieses Polynom unendlich lang sein. Das will natürlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009358" }

  • Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 9 | A.12.09

    Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema „Nullstellen“ bzw. „Gleichungen lösen“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008756" }

  • Wurzel ableiten; Brüche ableiten, Beispiel 1 | A.13.02

    Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein „x“ steht, sondern nur Zahlen und unten weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008769" }

  • Komplexe Zahlen potenzieren, Beispiel 1 | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist „n“. Der Betrag der neuen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009750" }

  • Ausklammern aus Gleichungen, Beispiel 10 | A.12.03

    Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008691" }

  • Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 6 | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008781" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 3 | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u133

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008792" }

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite