Ergebnis der Suche (12)

Ergebnis der Suche nach: ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 1008 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.53

    Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt „relativ einfach“ (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009697" }

  • Taylorpolynom; Taylorreihe; Taylorentwicklung, Beispiel 3 | A.32.01

    Die Taylorentwicklung macht aus einer komplizierten und hässlichen Funktion ein „einfaches“ Polynom, das Taylorpolynom, die Taylorreihe oder einfach nur Näherungspolynom. Natürlich hat das Ganze einen Haken. Um eine e-Funktion oder eine Sinus-Funktion oder etc.. in ein „einfaches“ Polynom umzuwandeln, müsste dieses Polynom unendlich lang sein. Das will natürlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009359" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 5 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009253" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u²

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008789" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 4 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009252" }

  • Taylorpolynom; Taylorreihe; Taylorentwicklung, Beispiel 2 | A.32.01

    Die Taylorentwicklung macht aus einer komplizierten und hässlichen Funktion ein „einfaches“ Polynom, das Taylorpolynom, die Taylorreihe oder einfach nur Näherungspolynom. Natürlich hat das Ganze einen Haken. Um eine e-Funktion oder eine Sinus-Funktion oder etc.. in ein „einfaches“ Polynom umzuwandeln, müsste dieses Polynom unendlich lang sein. Das will natürlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009358" }

  • Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 3 | A.45.05

    Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach „x“ auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009600" }

  • Tangente bestimmen über Tangentensteigung | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008864" }

  • Parabel, Hyperbel, Exponentialfunktion: wie man mit verschiedenen Funktionstypen rechnet | A.06

    Von manchen Funktionstypen werden schon recht „früh“ diverse Gesichtspunkte betrachtet. Von Parabeln (ganzrationale Funktionen), Hyperbeln und Exponentialfunktionen sind an dieser Stelle hauptsächlich Grenzwertbetrachtungen relevant (Limes) und das ungefähre Aussehen dieser Funktionen im Koordinatensystem. Dazu noch ein paar andere Kleinigkeiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008583" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 2 | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008598" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite