Ergebnis der Suche (12)

Ergebnis der Suche nach: ( ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: E-LEARNING) ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 1252 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • p-q-Formel, Mitternachtsformel, Beispiel 9 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008716" }

  • Ausklammern aus Gleichungen, Beispiel 10 | A.12.03

    Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008691" }

  • Parabel verschieben, Beispiel 1 | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008491" }

  • Tangente an Parabel, Beispiel 2 | A.04.13

    Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt „Tangente“. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008516" }

  • Horner-Schema, Beispiel 3 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008743" }

  • Umkehrfunktion berechnen, Beispiel 1 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009231" }

  • Mit Keplersche Fassregel Flächeninhalt bestimmen | A.32.04

    Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009368" }

  • Exponentialfunktion: Ableitung, Beispiel 5 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009408" }

  • Exponentialfunktion: Ableitung, Beispiel 2 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009405" }

  • LFF Linearfaktorform einer Parabel aus Normalform bestimmen, Beispiel 3 | A.04.06

    Aus der Linearfaktorform (LFF) der Parabel kann man die Nullstellen der Parabel recht einfach ablesen. Die LFF lautet: y=a*(x-x1)*(x-x2), wobei x1 und x2 die Nullstellen der Parabel sind. Hat man also die Normalform der Parabel gegeben und sucht die LFF, berechnet man erst die Nullstellen der Parabel (meist mit der Mitternachtsformel, also p-q-Formel oder a-b-c-Formel), setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008485" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite