Ergebnis der Suche (9)

Ergebnis der Suche nach: ( (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: ABLEITUNG)

Es wurden 386 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Beispielaufgaben zu Ableitungen, Beispiel 1 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008797" }

  • Komplizierte trigonometrische Funktion ableiten | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009471" }

  • Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 1 | A.13.04

    Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit „Mal“ verbunden sind). In beiden Faktoren sollte die Variable („x“) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008783" }

  • Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 5 | A.13.04

    Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit „Mal“ verbunden sind). In beiden Faktoren sollte die Variable („x“) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008787" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 3 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009710" }

  • Wurzelfunktion ableiten, Beispiel 1 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009582" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 6

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008877" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen / Bruchfunktion | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009509" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009708" }

  • Integralfunktion bestimmen, Beispiel 5 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008988" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite