Ergebnis der Suche (6)

Ergebnis der Suche nach: (Freitext: ZAHL) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 546 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Kopfrechnen: schriftliche Multiplikation, Beispiel 1 | B.08.04

    Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009937" }

  • Ungleichungen | A.26

    Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein „Kleiner-Zeichen“ oder ein „Größer-Zeichen“ (bzw. „kleiner gleich“ oder „größer gleich“). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009172" }

  • Kopfrechnen: schriftliche Multiplikation, Beispiel 6 | B.08.04

    Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009942" }

  • Exponentialfunktion: Nullstellen berechnen | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009389" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009397" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 5 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009394" }

  • Kopfrechnen: schriftliche Multiplikation, Beispiel 7 | B.08.04

    Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009943" }

  • Integrieren von komplizierten Exponentialfunktionen | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009421" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 2 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009423" }

  • Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009411" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite