Ergebnis der Suche (3)

Ergebnis der Suche nach: ( (Freitext: ZAHL) und (Schlagwörter: KOORDINATE) ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 65 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 2 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009744" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 6 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009748" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 4 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009746" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 5 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009747" }

  • Komplexe Zahlen dividieren und Kehrwert bilden | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009742" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 3 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009745" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 1 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009743" }

  • Uneigentliche Integrale berechnen, Beispiel 5 | A.18.05

    Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008961" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009884" }

  • Geraden einzeichnen, Beispiel 3 | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008341" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite