Ergebnis der Suche (11)

Ergebnis der Suche nach: (Freitext: ZAHL) und (Quelle: "Bildungsmediathek NRW")

Es wurden 434 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Wurzel von komplexen Zahlen ziehen, Beispiel 4 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009758" }

  • Mit p-q Formel quadratische Gleichungen lösen | G.04.02

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die p-q-Formel. Um die p-q-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „x²+px+q=0“. Auf der rechten Seite der Gleichung muss also Null stehen, vor dem „x²“ darf nichts stehen (also eine „1“). Steht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010074" }

  • Wurzel von komplexen Zahlen ziehen, Beispiel 1 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009755" }

  • Mit p-q Formel quadratische Gleichungen lösen, Beispiel 2 | G.04.02

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die p-q-Formel. Um die p-q-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „x²+px+q=0“. Auf der rechten Seite der Gleichung muss also Null stehen, vor dem „x²“ darf nichts stehen (also eine „1“). Steht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010076" }

  • Wurzel von komplexen Zahlen ziehen | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009754" }

  • Wurzel von komplexen Zahlen ziehen, Beispiel 3 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009757" }

  • Zukunft zwischen Komfort und Katastrophe

    Sturzfluten, Dürre, Hurrikans, Hagelstürme, Hitzewellen, Überschwemmungen und Winterstürme: Zahl und Ausmaß der wetterbedingten Naturkatastrophen nehmen zu, ebenso die dadurch verursachten Schäden

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00013541" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 3 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009557" }

  • Substitution von Termen in Gleichungen, Beispiel 12 | A.12.06

    Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008732" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009604" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite