Ergebnis der Suche (11)

Ergebnis der Suche nach: (Freitext: WINKELFUNKTION) und (Systematikpfad: MATHEMATIK)

Es wurden 224 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Funktionsanalyse einer trigonometrischen Funktion, Beispiel 2 | A.42.11

    Ein paar Beispiele von Funktionsuntersuchungen von trigonometrischen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Periode der Funktion und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009498" }

  • Kurvendiskussion Beispiel 1b: Funktion auf Symmetrie untersuchen | A.19.01

    Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008993" }

  • Kurvendiskussion von Kurvenscharen, Beispiel 3 | A.24.02

    Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009143" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 3 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009484" }

  • Komplizierte trigonometrische Funktion ableiten | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009471" }

  • Kurvendiskussion Beispiel 3a: Ableitungen bestimmen | A.19.03

    Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009009" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 4 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009093" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009478" }

  • Kurvendiskussion Beispiel 3f: Funktion zeichnen | A.19.03

    Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009014" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 3 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009459" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite