Ergebnis der Suche (2)

Ergebnis der Suche nach: ( (Freitext: WERTE) und (Schlagwörter: E-LEARNING) ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 129 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Ableitung der Umkehrfunktion, Beispiel 4 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009262" }

  • Ableitung der Umkehrfunktion, Beispiel 6 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009264" }

  • Ableitung der Umkehrfunktion, Beispiel 3 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009261" }

  • Ableitung der Umkehrfunktion, Beispiel 2 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009260" }

  • Ableitung der Umkehrfunktion, Beispiel 5 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009263" }

  • Ableitung der Umkehrfunktion, Beispiel 1 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009259" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008623" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009239" }

  • Definitionsmenge einer Funktion bestimmen, Beispiel 1 | A.11.05

    Der Definitionsbereich oder die Definitionsmenge ist die Menge aller x-Werte, die man in eine Funktion einsetzen DARF. Die Definitionsmenge wirft Probleme auf, wenn der Nenner ein „x“ enthält sowie bei Wurzeln und bei Logarithmen (dazu noch bei ein paar weniger wichtigen Funktionen). Nenner dürfen nicht Null werden, unter Wurzeln darf nichts Negatives stehen (speziell ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008639" }

  • Geradengleichung aus P und m über Normalform bestimmen, Beispiel 6 | A.02.08

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für „m“ und die Koordinaten des Punktes für „x“ und „y“ in die Gleichung „y=m*x+b“ einsetzen um „b“ zu bestimmen. Nun setzt man die Werte für „m“ und „b“ wieder ein und hat die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008383" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite