Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: WERT) und (Schlagwörter: VIDEO)

Es wurden 194 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 4 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009706" }

  • Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen | A.05.03

    Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach „x“ auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008558" }

  • Beschränktes Wachstum berechnen, Beispiel 6 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009329" }

  • Beschränktes Wachstum berechnen, Beispiel 3 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009326" }

  • Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen, Beispiel 3 | A.05.03

    Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach „x“ auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008561" }

  • Normale außerhalb, Beispiel 3 | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008895" }

  • Tangente außerhalb, Beispiel 4 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008889" }

  • Normale außerhalb | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008892" }

  • Geraden einzeichnen, Beispiel 3 | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008341" }

  • Tangente außerhalb, Beispiel 5 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008890" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite