Ergebnis der Suche (5)

Ergebnis der Suche nach: ( (Freitext: VOLUMEN) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 104 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • GRIPS Mathe - Volumen Prisma und Zylinder - GRIPS Mathe Lektion 22

    In dieser Lektion dreht sich alles um Prismen und Dreieckssäulen. Im Prinzregententheater gibt es gerade eine Eisfläche und Mathelehrer Basti Wohlrab und seine beiden Schüler Matthias und Niklas berechnen, wie viel Wasser dafür notwendig war. Am Schuhkarton und anderen Karton-Formen erklärt Basti Wohlrab die Grundbegriffe von geraden Prismen, Quader, Würfel und Zylinder ...

    Details  
    { "Select.HE": "DE:Select.HE:1642986" }

  • Volumen eines Quaders mit Grundvorstellungen verbinden

    In dieser Unterrichtseinheit zum Volumen eines Quaders werden den Schülerinnen und Schülern durch interaktive Arbeitsmaterialien vielfältige Möglichkeiten eröffnet, um die Grundvorstellungen zum Volumenbegriff zu entwickeln.

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1000492" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010322" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010319" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010321" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010320" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010335" }

  • Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel | T.06.07

    Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010327" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 2 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010337" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010338" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite