Ergebnis der Suche (5)

Ergebnis der Suche nach: ( (Freitext: VOLUMEN) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 66 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009052" }

  • Volumen Kegel und Volumen Zylinder berechnen | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009051" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 3 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009054" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 2 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009053" }

  • Kegel, Kegelstumpf, Mantelfläche berechnen | T.06.11

    Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010339" }

  • Extremwertaufgaben | A.21

    Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009032" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 1 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010584" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 3 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010586" }

  • Rechnen können mit GTR / CAS - Abituraufgabe 4a | A.29.05

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr „erstes Mal“. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009296" }

  • Rechnen können mit GTR / CAS - Abituraufgabe 4c | A.29.05

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr „erstes Mal“. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009298" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite