Ergebnis der Suche (2)

Ergebnis der Suche nach: ( (Freitext: VOLUMEN) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 52 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009034" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 3 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010608" }

  • Volumen dreiseitige Pyramide berechnen, Beispiel 2 | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010603" }

  • Volumen dreiseitige Pyramide berechnen | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010601" }

  • Volumen dreiseitige Pyramide berechnen, Beispiel 3 | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010604" }

  • Volumen dreiseitige Pyramide berechnen, Beispiel 1 | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010602" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010605" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010321" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010319" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010322" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite