Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: VEKTOREN) und (Quelle: "Bildungsmediathek NRW")

Es wurden 34 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Vektorrechnung, Vektorgeometrie, analytische Geometrie: so berechnet man Vektoren

    Ein Vektor ist eine Richtung die eine bestimmte Länge hat. Vektorgeometrie (auch „Vektorrechnung“ oder „analytische Geometrie“ genannt) befasst sich mit linearen Berechnungen in Räumen (meist im dreidimensionalen Raum). Die Objekte, mit denen man rechnet sind Punkte, Geraden, Ebenen, Kugeln. Die meisten dieser Objekte werden als Vektoren angegeben (wie das geht, sehen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010344" }

  • Affine Abbildung | M.09

    Eine affine Abbildung wird durch Matrizen beschrieben. Die Matrizen nehmen Vektoren (als eine Art x-Werte) und machen daraus neue Vektoren (eine Art y-Werte). Die Abbildungen können Drehungen sein, Verschiebungen, Streckungen, Spiegelungen, Scherungen und noch ein paar andere Möglichkeiten. Die ein- oder andere Idee ist noch wichtig, das machen wir hier ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010261" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 3 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010608" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 2 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010607" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010605" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 1 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010606" }

  • Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 3 | V.05.07

    Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010521" }

  • Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 2 | V.05.07

    Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010520" }

  • Beweise über die Vektorgeometrie | V.10

    Es gibt in der Mathematik den ein oder anderen Beweis, den man nur über die vektorielle Geometrie führen kann. Einige dieser Beweisverfahren werden wir hier vorstellen. 1. Wir werden prüfen, ob Vektoren „linear abhängig“ oder „linear unabhängig“ sind („Linearkombinationen“ hängen damit zusammen) 2. Wir werden „Teilverhältnisse“ bei Strecken und Geraden berechnen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010661" }

  • Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 1 | V.05.07

    Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010519" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite