Ergebnis der Suche (2)

Ergebnis der Suche nach: (Freitext: VEKTOR) und (Quelle: "Bildungsmediathek NRW")

Es wurden 67 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor | V.01.03

    Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010353" }

  • Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor, Beispiel 2 | V.01.03

    Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010355" }

  • Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor, Beispiel 1 | V.01.03

    Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010354" }

  • Vektorzug, Beispiel 2 | V.10.03

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010673" }

  • Teilverhältnis, Beispiel 3 | V.10.02

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010669" }

  • Skalarprodukt Beweise, Beispiel 1 | V.10.04

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010675" }

  • Teilverhältnis, Beispiel 4 | V.10.02

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010670" }

  • Teilverhältnis, Beispiel 1 | V.10.02

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010667" }

  • Vektorzug | V.10.03

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010671" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite