Ergebnis der Suche (9)

Ergebnis der Suche nach: (Freitext: TANGENS-FUNKTION) und (Schlagwörter: "GLEICHUNG (MATHEMATIK)")

Es wurden 369 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Mit Intervallschachtelung Nullstellen bestimmen | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009365" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 2 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009367" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 1 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009366" }

  • Geraden mit Parameter, Beispiel 3 | A.02.17

    Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Geradenschar“ (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man „Schargerade“ (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008429" }

  • Geraden mit Parameter | A.02.17

    Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Geradenschar“ (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man „Schargerade“ (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008426" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 3 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008931" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 4 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008932" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 2 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008930" }

  • Symmetrie einer Funktion über Verschieben beweisen | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008928" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 1 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008929" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite