Ergebnis der Suche (7)

Ergebnis der Suche nach: ( (Freitext: TANGENS) und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: TANGENS)

Es wurden 88 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 5 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009087" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 2 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009084" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 4 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009086" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 3 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009484" }

  • Komplizierte trigonometrischen Funktionen integrieren | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009481" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 2 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009483" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 1 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009482" }

  • Mathematik und Fußball: Torwart und Elfmeter

    Im Gegensatz zum normalen Schuss auf das Tor besteht bei einem Elfmeter die Besonderheit, dass sich der Strafstoßpunkt genau 11m mittig vor dem Tor befindet. Mit dieser Angabe lässt sich, zusammen mit den bekannten Abmessungen des Tores, der vorhandene maximale Schusswinkel berechnen. Mit weiteren Größen wie der Fläche, die ein Torwart aufgrund seiner Größe vom Tor ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_000571" }

  • Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 2 | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009465" }

  • Zweite Lösung einer trigonometrischen Gleichung bestimmen | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009463" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite