Ergebnis der Suche (6)

Ergebnis der Suche nach: (Freitext: TANGENS) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 67 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 4 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009086" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 1 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009083" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 1 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009489" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 2 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009490" }

  • Schaubild einer trigonometrischen Funktion erstellen | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009488" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 3 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009491" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009485" }

  • Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 3 | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009466" }

  • Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 2 | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009465" }

  • Zweite Lösung einer trigonometrischen Gleichung bestimmen | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009463" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite