Ergebnis der Suche (6)

Ergebnis der Suche nach: (Freitext: STAMMFUNKTION) und (Schlagwörter: ABLEITUNG)

Es wurden 81 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Partialbruchzerlegung, Beispiel 5 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008861" }

  • Wurzel integrieren; Brüche integrieren, Beispiel 2 | A.14.02

    Viele Wurzeln und Brüche kann man so umschreiben, so dass die Ableitung wesentlich einfacher wird. Brüche: Wenn oben im Zähler kein „x“ steht, sondern nur Zahlen und unten im Nenner weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen, indem man das Vorzeichen der Hochzahl wechselt. Wurzeln: man schreibt die Wurzel um, und zwar in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008823" }

  • Partialbruchzerlegung | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008856" }

  • Partialbruchzerlegung, Beispiel 3 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008859" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 2 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009483" }

  • Komplizierte trigonometrischen Funktionen integrieren | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009481" }

  • Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden | A.14.01

    Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008814" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 1 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009482" }

  • Komplizierte trigonometrischen Funktionen integrieren, Beispiel 3 | A.42.07

    Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009484" }

  • Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04

    Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009226" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite