Ergebnis der Suche (20)

Ergebnis der Suche nach: (Freitext: SCHRÖDINGER-GLEICHUNG) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 246 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite

Treffer:
191 bis 200
  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 2 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009718" }

  • Moivre-Laplace Näherungsformel | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010825" }

  • Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009707" }

  • Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 3 | A.51.03

    Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009669" }

  • Schnittpunkt Ebene-Kugel berechnen, Beispiel 2 | V.06.09

    Schnittkreis einer Ebene mit einer Kugel: Schneidet man eine Ebene mit einer Kugel, so erhält man als Schnittfläche einen Kreis. Leider gibt es im dreidimensionalen keine Gleichung für einen Kreis. Man muss also im Normalfall „nur“ den Mittelpunkt und den Radius des Schnittkreises berechnen. Den Schnittkreismittelpunkt erhält man, indem man eine Lotgerade auf E aufstellt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010557" }

  • Schnittpunkt Kugel-Kugel berechnen, Beispiel 3 | V.06.10

    Schnittkreis zweier Kugeln: Beim Schnitt Kugel-Kugel entsteht ein Schnittkreis. Im 3D gibt es keine Gleichung für einen Kreis, also muss man üblicherweise Mittelpunkt und Radius des Schnittkreises berechnen. Dafür wendet man einen Trick an: Man löst ALLE Klammern aus beiden Kugelgleichungen auf (falls sie es nicht schon sind) und zieht die Kugelgleichungen von einander ab. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010562" }

  • Schnittpunkt Kugel-Kugel berechnen | V.06.10

    Schnittkreis zweier Kugeln: Beim Schnitt Kugel-Kugel entsteht ein Schnittkreis. Im 3D gibt es keine Gleichung für einen Kreis, also muss man üblicherweise Mittelpunkt und Radius des Schnittkreises berechnen. Dafür wendet man einen Trick an: Man löst ALLE Klammern aus beiden Kugelgleichungen auf (falls sie es nicht schon sind) und zieht die Kugelgleichungen von einander ab. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010559" }

  • So löst man eine Differentialgleichung DGL | A.53.01

    Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009698" }

  • Graph zu y=a*cos(x-b)+c

    In diesem dynamischen Arbeitsblatt von realmath.de können die Schülerinnen und Schüler die Auswirkungen der Parameter a, b und c auf den Funktionsgraphen zur Gleichung y=a*cos(x-b)+c beobachten. Dabei verändern sie jeweils nur einen der Parameter a, b oder c. Die Schülerinnen und Schüler müssen beachten, dass x im Bogenmaß angegeben wird.

    Details  
    { "Select.HE": "DE:Select.HE:1681054" }

  • Graph zu y=a*tan(x-b)+c

    In diesem dynamischen Arbeitsblatt von realmath.de können die Schülerinnen und Schüler die Auswirkungen der Parameter a, b und c auf den Funktionsgraphen zur Gleichung y=a*tan(x-b)+c beobachten. Dabei verändern sie jeweils nur einen der Parameter a, b oder c. Die Schülerinnen und Schüler müssen beachten, dass x im Bogenmaß angegeben wird.

    Details  
    { "Select.HE": "DE:Select.HE:1681055" }

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite