Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: PUNKT) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 204 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen | A.43.09

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009529" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 1

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009530" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009215" }

  • Geometrie: Videos zur Berechnung von Abständen im Raum

    In diesem Videokurs für den Mathematik-Unterricht in der Oberstufe werden die einfachsten und gängigsten Abstandsberechnungen in der dreidimensionalen Geometrie erklärt.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_000013" }

  • Attrappenversuche

    In diesem Arbeitsmaterial erörtern die Schülerinnen und Schüler die Ergebnisse von Attrappenversuchen an Silbermöwen-Küken und sie gewinnen Einsichten über einen möglichen Versuchsablauf von Attrappenversuchen. Nebenbei vertiefen sie ihr Verständnis über Schlüsselreize.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_002255" }

  • Nationalparks in den USA - Vom Dach des Kontinents zum tiefsten Punkt

    Karte der USA, in der die Nationalparks als grüne Farbflächen eingezeichnet sind. Benannt sind die Nationalparks, in denen die höchsten Erhebungen und tiefsten Regionen der USA zu sehen sind.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00012714", "MELT": "DE:SODIS:MELT-04602306.14" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 2 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010585" }

  • Digitales Geländemodell

    In einem digitalen Geländemodell legt man in bestimmten Abständen ein Rastergitter über einen Teil der als Kugel gedachten Erdoberfläche. Jedem Punkt P´(x,y,0) dieses Gitters ordnet man die Höhe über/unter dem Meeresspiegel zu. Dieser Raumpunkt P(x,y,h) ist ein Punkt der realen Erdoberfläche. Das Gitter mit seinen Höhendaten wird normalerweise in einer sequentiellen ...

    Details  
    { "DBS": "DE:DBS:55067" }

  • Tangentialkegel wenn Tangenten an Kugel | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010583" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 3 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010586" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite