Ergebnis der Suche (10)

Ergebnis der Suche nach: (Freitext: PKS-WERT) und (Schlagwörter: "GLEICHUNG (MATHEMATIK)")

Es wurden 103 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 3 | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009466" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 6 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009336" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 4 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009334" }

  • Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 1 | A.42.03

    Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009464" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009342" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009485" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009495" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 2

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009494" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen | A.42.10.

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009492" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite