Ergebnis der Suche (7)

Ergebnis der Suche nach: ( (Freitext: PKS-WERT) und (Schlagwörter: "GLEICHUNG (MATHEMATIK)") ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 86 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Polynome über Bedingungen aufstellen, Beispiel 4 | A.46.05

    Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009640" }

  • Polynome über Bedingungen aufstellen, Beispiel 3 | A.46.05

    Um Polynome aufzustellen gibt es eigentlich nur drei Typen von Informationen: 1). Punkte. In diesem Fall setzt man x- und y-Wert in f(x) ein [=Inzidenzbedingung]. 2).Steigungen. In diesem Fall setzt man x-Wert und Steigung in f'(x) ein. 3). Hoch-, Tief- oder Wendepunkt. In diesem Fall setzt man f'(x)=0 bzw. f''(x)=0 und setzt für x den entsprechenden ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009639" }

  • Beschränktes Wachstum berechnen, Beispiel 4 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009327" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009705" }

  • Beschränktes Wachstum berechnen, Beispiel 2 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009325" }

  • Beschränktes Wachstum berechnen, Beispiel 1 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009324" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009332" }

  • Logistisches Wachstum mit Differentialgleichung berechnen | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009340" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009331" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 6 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009336" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite