Ergebnis der Suche (5)

Ergebnis der Suche nach: (Freitext: MATHEMATISCH-NATURWISSENSCHAFTLICHE oder FAECHER) und (Schlagwörter: ANALYSIS)

Es wurden 1326 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Polynomdivision, Beispiel 6 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008739" }

  • Umkehrfunktion berechnen | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009230" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 5 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009433" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 4 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009432" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009428" }

  • Umkehrfunktion berechnen, Beispiel 2 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009232" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 6 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009434" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009431" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009430" }

  • Umkehrfunktion berechnen, Beispiel 3 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009233" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite