Ergebnis der Suche (11)

Ergebnis der Suche nach: ( (Freitext: M-LEARNING) und (Quelle: "Bildungsmediathek NRW") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 1796 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Geraden auslesen; Geradengleichung, Beispiel 4 | A.02.02

    Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist „b“ (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008350" }

  • Geraden auslesen; Geradengleichung, Beispiel 3 | A.02.02

    Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist „b“ (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008349" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 6 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009088" }

  • Geraden auslesen; Geradengleichung, Beispiel 1 | A.02.02

    Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist „b“ (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008347" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite