Ergebnis der Suche (11)

Ergebnis der Suche nach: ( (Freitext: M-LEARNING) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: MATHEMATIK)

Es wurden 328 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 4 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010183" }

  • Determinante berechnen bei 3x3-Matrizen | M.04.02

    Determinante bei 3x3-Matrizen: Man schreibt die erste und zweite Spalte der Matrix noch einmal hinter die Matrix. Nun sieht man drei Hauptdiagonalen (beginnen links oben, enden rechts unten) und drei Nebendiagonalen (beginnen links unten, enden rechts oben). Von jeweils einer Hauptdiagonalen multipliziert man die Einträge und addiert die Ergebnisse, danach multipliziert man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010195" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 6 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010185" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010153" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010151" }

  • LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren, Beispiel 1 | M.02.02

    Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010144" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010142" }

  • Wirtschaftsmatrizen R-Z-E: Beispiel für Fortgeschrittene | M.05.04

    In fast jeder längeren Beispielaufgabe hat man irgendwann mal den Fall, dass man einen Zusammenhang z.B. zwischen Rohstoffen und Endprodukten braucht, jedoch weder alle Mengeneinheiten der Rohstoffe, noch die der Endprodukte gegeben sind. Man muss also mit Parametern rechnen. Theoretisch wendet man nur eine der drei Formeln: (RZ)*(Z)=(R), (ZE)*(E)=(Z) oder (RE)*(E)=(R) an, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010216" }

  • Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren | M.02.05

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010154" }

  • Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.05

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010156" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite