Ergebnis der Suche (10)

Ergebnis der Suche nach: ( (Freitext: LOGARITHMUS) und (Systematikpfad: MATHEMATIK) ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 133 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Senkrechte Asymptote berechnen | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008897" }

  • Senkrechte Asymptote berechnen, Beispiel 3 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008900" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 1 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009390" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 2 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009391" }

  • Senkrechte Asymptote berechnen, Beispiel 4 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008901" }

  • Schaubild einer Logarithmusfunktion erstellen, Beispiel 5 | A.44.07

    ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009571" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 4 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009393" }

  • Senkrechte Asymptote berechnen, Beispiel 6 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008903" }

  • Analysis 4 | die verschiedenen Funktionstypen, ihre Besonderheiten und wie man mit ihnen rechnet

    Wie der Kapitelname schon vermuten lässt, betrachten wir hier die verschiedenen Funktionstypen mit ihren Besonderheiten. Speziell gehen wir auf sechs Funktionstypen ein: 1.Exponentialfunktionen (e-Funktionen), 2.Trigonometrische Funktionen (sin oder cos), 3.Gebrochen-rationale Funktionen (Bruch-Funktionen), 4.Logarithmus-Funktionen, 5.Wurzelfunktionen, 6.Ganzrationale ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009387" }

  • Schaubilder von Funktionen: Wurzelfunktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009204" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite