Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: LINEARE und GLEICHUNG) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 55 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten | G.02.02

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010039" }

  • Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 1 | G.02.02

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010040" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009704" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009705" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 4 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009706" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

  • Video zur Wurzelgleichung

    In diesem YouTube-Lernvideo von www.pruefungskoenig.de wird eine Wurzelgleichung, die zu einer quadratischen Gleichung führt, ausführlich gelöst.

    Details  
    { "Select.HE": "DE:Select.HE:1634511" }

  • Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen | G.02.07

    Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010055" }

  • Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 1

    Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010056" }

  • Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 2

    Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010057" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite