Ergebnis der Suche (6)

Ergebnis der Suche nach: (Freitext: JUBIL��UM) und (Systematikpfad: MATHEMATIK)

Es wurden 1148 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Funktionen verschieben: so wird’s gemacht, Beispiel 2 | A.23.01

    Wie kann man Funktion verschieben? Bei einer Verschiebung um „a“ nach links, ersetzt man in der Funktion jeden Buchstaben „x“ durch „x+a“. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man „x“ durch „x-a“ ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert „b“ nach oben oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009099" }

  • Kreuzprodukt, Beispiel 5 | V.05.03

    Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010502" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 5 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010184" }

  • Kreuzprodukt, Beispiel 7 | V.05.03

    Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010504" }

  • Funktionen verschieben: so wird’s gemacht | A.23.01

    Wie kann man Funktion verschieben? Bei einer Verschiebung um „a“ nach links, ersetzt man in der Funktion jeden Buchstaben „x“ durch „x+a“. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man „x“ durch „x-a“ ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert „b“ nach oben oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009097" }

  • Inverse Matrix: so kann man eine Matrix invertieren | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010179" }

  • Wurzelfunktion ableiten, Beispiel 1 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009582" }

  • Schaubild einer Exponentialfunktion erstellen, Beispiel 1 | A.41.09

    Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009440" }

  • Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel | T.06.07

    Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010327" }

  • Wurzelfunktion integrieren bzw. aufleiten | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009589" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite