Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: H��RFUNKSENDUNG) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 102 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Achsparallele Flächen berechnen, Beispiel 1 | A.03.01

    Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008438" }

  • Achsparallele Flächen berechnen, Beispiel 4 | A.03.01

    Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008441" }

  • Achsparallele Flächen berechnen, Beispiel 2 | A.03.01

    Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008439" }

  • Achsparallele Flächen berechnen | A.03.01

    Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008437" }

  • Achsparallele Flächen berechnen, Beispiel 3 | A.03.01

    Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008440" }

  • Dreiecksfläche berechnen | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008974" }

  • Quadratische Pyramide berechnen, Beispiel 2 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010325" }

  • Dreiecksfläche berechnen, Beispiel 4 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008978" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010338" }

  • Dreiecksfläche berechnen, Beispiel 3 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008977" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite