Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: GLEICHUNGSSYSTEM) und (Quelle: "Bildungsmediathek NRW")

Es wurden 105 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010142" }

  • Wirtschaftsmatrizen R-Z-E: Beispiel für Fortgeschrittene | M.05.04

    In fast jeder längeren Beispielaufgabe hat man irgendwann mal den Fall, dass man einen Zusammenhang z.B. zwischen Rohstoffen und Endprodukten braucht, jedoch weder alle Mengeneinheiten der Rohstoffe, noch die der Endprodukte gegeben sind. Man muss also mit Parametern rechnen. Theoretisch wendet man nur eine der drei Formeln: (RZ)*(Z)=(R), (ZE)*(E)=(Z) oder (RE)*(E)=(R) an, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010216" }

  • Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 1 | G.02.06

    Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010052" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010141" }

  • LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren | M.02.02

    Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010143" }

  • Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 2 | G.02.06

    Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010053" }

  • LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren, Beispiel 1 | M.02.02

    Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010144" }

  • LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren, Beispiel 2 | M.02.02

    Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010145" }

  • Wirtschaftsmatrizen R-Z-E: Beispiel für Fortgeschrittene, Teil a | M.05.04

    In fast jeder längeren Beispielaufgabe hat man irgendwann mal den Fall, dass man einen Zusammenhang z.B. zwischen Rohstoffen und Endprodukten braucht, jedoch weder alle Mengeneinheiten der Rohstoffe, noch die der Endprodukte gegeben sind. Man muss also mit Parametern rechnen. Theoretisch wendet man nur eine der drei Formeln: (RZ)*(Z)=(R), (ZE)*(E)=(Z) oder (RE)*(E)=(R) an, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010217" }

  • Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ | G.02.06

    Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010051" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite