Ergebnis der Suche (10)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: VIDEO)

Es wurden 379 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Trigonometrische Funktionen: kurze Einführung | A.42

    Trigonometrische Funktionen sind periodisch, wiederholen sich also in regelmäßigen Abständen. Der Abstand, bis es zur nächsten Wiederholung kommt, nennt sich Periode. Die wichtigsten periodischen Funktionen der Trigonometrie sind die Sinus, die Kosinus und die Tangens-Funktion (abgekürzt; sin(x), cos(x), tan(x)). Unwichtige periodische Funktionen sind Kotangens, Sekans ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009451" }

  • Wurzelfunktion integrieren bzw. aufleiten, Beispiel 3 | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009592" }

  • Wurzelfunktion ableiten | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009581" }

  • Symmetrie von ganzrationalen Funktionen bestimmen | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008915" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 2 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009473" }

  • Quadratische Ungleichungen, Beispiel 3 | A.26.02

    Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009183" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 1 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008908" }

  • Ableitung von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.02

    Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009586" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 1

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008872" }

  • Integrieren von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.04

    Bei hässlichen Stammfunktionen, die eine Wurzel enthalten, braucht man meist die Substitution oder die Produktintegration (partielle Integration). Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009594" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite