Ergebnis der Suche (9)

Ergebnis der Suche nach: ( ( (Freitext: GLEICHUNG) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: E-LEARNING) ) und (Systematikpfad: MATHEMATIK)

Es wurden 377 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Wurzelfunktion ableiten, Beispiel 3 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009584" }

  • Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 4 | A.02.21

    Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008435" }

  • Wurzelfunktion integrieren bzw. aufleiten, Beispiel 1 | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009590" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 3 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008918" }

  • Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 2 | A.02.21

    Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008433" }

  • Trigonometrische Funktionen: kurze Einführung | A.42

    Trigonometrische Funktionen sind periodisch, wiederholen sich also in regelmäßigen Abständen. Der Abstand, bis es zur nächsten Wiederholung kommt, nennt sich Periode. Die wichtigsten periodischen Funktionen der Trigonometrie sind die Sinus, die Kosinus und die Tangens-Funktion (abgekürzt; sin(x), cos(x), tan(x)). Unwichtige periodische Funktionen sind Kotangens, Sekans ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009451" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 2 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009473" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 5

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008876" }

  • Symmetrie einer Funktion mit Formel berechnen, Beispiel 4 | A.17.03

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008927" }

  • Ungleichungen | A.26

    Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein „Kleiner-Zeichen“ oder ein „Größer-Zeichen“ (bzw. „kleiner gleich“ oder „größer gleich“). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009172" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite