Ergebnis der Suche (31)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: ANALYSIS)

Es wurden 369 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 25 26 27 28 29 30 31 32 33 34 35 36 Eine Seite vor Zur letzten Seite

Treffer:
301 bis 310
  • Parabel mit Parameter berechnen | A.04.19

    Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Parabelschar“ (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man „Scharparabel“ (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008542" }

  • Volumen Kegel und Volumen Zylinder berechnen | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009051" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 4 | A.53.04

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009715" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009052" }

  • Beschränktes Wachstum berechnen, Beispiel 2 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009325" }

  • Logistisches Wachstum mit Differentialgleichung berechnen | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009340" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 6 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009336" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009342" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 2 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009053" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 3 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009333" }

Seite:
Zur ersten Seite Eine Seite zurück 25 26 27 28 29 30 31 32 33 34 35 36 Eine Seite vor Zur letzten Seite