Ergebnis der Suche (77)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Quelle: "Bildungsmediathek NRW") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 768 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 66 67 68 69 70 71 72 73 74 75 76 77 Eine Seite vor Zur letzten Seite

Treffer:
761 bis 768
  • Wurzel von komplexen Zahlen ziehen | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009754" }

  • Laplace Wahrscheinlichkeit: Laplace-Experiment, Moivre-Laplace, Laplace-Gleichung | W.14.07

    Laplace war ein Mathematiker, sehr in recht vielen Bereichen tätig war. Der Begriff „Laplace“ taucht also auch in der Wahrscheinlichkeitstheorie häufig und mit unterschiedlichen Bedeutungen(!) auf. 1. Das „Laplace-Experiment“ ist ein Versuch in dem alle denkbaren Ausgänge die gleiche W.S. haben. Z.B. der Münzwurf (W.S. ist je 50%), der ideale Würfel mit der W.S. von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010748" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 4 | A.53.04

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009715" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 2 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010188" }

  • Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen | V.10.01

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010662" }

  • Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen, Beispiel 3 | V.10.01

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010665" }

  • Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen, Beispiel 2 | V.10.01

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010664" }

  • Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen, Beispiel 1 | V.10.01

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010663" }

Seite:
Zur ersten Seite Eine Seite zurück 66 67 68 69 70 71 72 73 74 75 76 77 Eine Seite vor Zur letzten Seite