Ergebnis der Suche (4)

Ergebnis der Suche nach: ( ( (Freitext: GEOMETRIE) und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: VIDEO) ) und (Schlagwörter: GEOMETRIE)

Es wurden 158 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008423" }

  • Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 3 | A.04.04

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008476" }

  • Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 2 | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008417" }

  • Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 1 | A.04.04

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008474" }

  • Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 3 | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008418" }

  • Normalparabel zeichnen, Beispiel 3 | A.04.02

    Eine Normalparabel kann man natürlich zeichnen, in dem man eine Wertetabelle erstellt, die Punkte einzeichnet und dann zu einer Parabelform verbindet. (Mit der Methode kann man alle Funktionen und alle Parabeln zeichnen). Geschickter ist es jedoch, den Scheitelpunkt zu berechnen (siehe z.B. Kap.A.04.04) und dann von diesem Scheitelpunkt aus die Normalparabel aus zu zeichnen. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008465" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008466" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 6 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008472" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 4 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008470" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 5 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008471" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite