Ergebnis der Suche (10)

Ergebnis der Suche nach: ( (Freitext: GEOMETRIE) und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 101 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 2 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009053" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 3 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009054" }

  • Volumen Kegel und Volumen Zylinder berechnen | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009051" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009052" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009485" }

  • Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04

    Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009226" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 1

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009530" }

  • Analysis 4 | die verschiedenen Funktionstypen, ihre Besonderheiten und wie man mit ihnen rechnet

    Wie der Kapitelname schon vermuten lässt, betrachten wir hier die verschiedenen Funktionstypen mit ihren Besonderheiten. Speziell gehen wir auf sechs Funktionstypen ein: 1.Exponentialfunktionen (e-Funktionen), 2.Trigonometrische Funktionen (sin oder cos), 3.Gebrochen-rationale Funktionen (Bruch-Funktionen), 4.Logarithmus-Funktionen, 5.Wurzelfunktionen, 6.Ganzrationale ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009387" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen | A.43.09

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009529" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite