Ergebnis der Suche (9)

Ergebnis der Suche nach: ( (Freitext: FLASH-VIDEO) und (Systematikpfad: MATHEMATIK) ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 1874 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 3 | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u133

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008792" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 3 | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009504" }

  • Polynome über Nullstellen aufstellen, Beispiel 2 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009634" }

  • Schnittpunkt von Geraden berechnen, Beispiel 3 | A.02.07

    Will man zwei Funktionen schneiden, muss man die gleich setzen und nach „x“ auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008375" }

  • Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 6 | A.18.02

    Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008941" }

  • Entfernung berechnen, Beispiel 2 | A.01.04

    Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008321" }

  • Wendetangente und Wendenormale bestimmen, Beispiel 3 | A.15.03

    Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008881" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 4 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008911" }

  • Punkte und wie man mit ihnen rechnet | A.01

    Egal, ob man Punkte, Geraden, Funktionen oder was auch immer im Koordinatensystem gegeben hat. Wenn man die irgendwie abändern will (spiegeln, verschieben, Abstände berechnen will, ) führt man das ganz häufig auf Theorien zurück, die man von Koordinaten von Punkten kennt. In diesem Kapitel berechnen wir Mittelpunkte, Steigungen, Abstände zwischen zwei Punkten und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008303" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 4 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009475" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite