Ergebnis der Suche (12)

Ergebnis der Suche nach: ( (Freitext: FLASH-VIDEO) und (Schlagwörter: KOORDINATE) ) und (Schlagwörter: "FORMEL (MATHEMATIK)")

Es wurden 170 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Tangente außerhalb, Beispiel 3 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008888" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 1 | A.46.01

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009620" }

  • Funktionen spiegeln über Formel, Beispiel 4 | A.23.04

    Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe „x“ durch „2a-x“ ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009122" }

  • Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 4 | A.18.04

    Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008953" }

  • Uneigentliche Integrale berechnen, Beispiel 4 | A.18.05

    Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008960" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 2 | A.46.01

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009621" }

  • Uneigentliche Integrale berechnen, Beispiel 3 | A.18.05

    Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008959" }

  • Normale außerhalb, Beispiel 2 | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008894" }

  • Funktionen spiegeln über Verschieben, Beispiel 3 | A.23.05

    Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009128" }

  • Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt, Beispiel 2 | A.04.16

    Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann „a“ berechnen. Im Detail: die Scheitelform lautet ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008529" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite