Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: NULLSTELLE) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 176 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 1 | A.04.10

    Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008501" }

  • Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen | A.04.10

    Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008500" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009884" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 2 | A.46.01

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009621" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 3 | A.46.01

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009622" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 1 | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009624" }

  • Ungleichungen mit Brüchen, Beispiel 3 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009197" }

  • Lineare Ungleichungen, Beispiel 4 | A.26.01

    Eine lineare Ungleichung ist eine Ungleichung, in der nur „x“ vorkommt. Kein „x²“ oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich „Kleinerzeichen“ oder ein „Größerzeichen“. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein „x“ hat, kommt auf die linke Seite, alles ohne „x“ auf die rechte Seite. Teilt man durch etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009177" }

  • Ungleichungen mit Brüchen, Beispiel 2 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009196" }

  • Lineare Ungleichungen, Beispiel 5 | A.26.01

    Eine lineare Ungleichung ist eine Ungleichung, in der nur „x“ vorkommt. Kein „x²“ oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich „Kleinerzeichen“ oder ein „Größerzeichen“. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein „x“ hat, kommt auf die linke Seite, alles ohne „x“ auf die rechte Seite. Teilt man durch etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009178" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite