Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Schlagwörter: ANALYSIS) ) und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: "GLEICHUNG (MATHEMATIK)")

Es wurden 501 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Lineares Wachstum berechnen, Beispiel 1 | A.07.01

    Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben „y=m*x+b“, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008605" }

  • Logarithmusfunktion: Gleichungen lösen | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009554" }

  • Gleichungen und Nullstellen lösen | A.12

    Gleichungen lösen kann man, indem man mit dem Nenner multipliziert (den Nenner „wegmacht“) und alles auf eine Seite bringt (gleich Null setzt). Ab jetzt berechnet man sozusagen Nullstellen von einer „neuen Funktion“. Nullstellen sind Schnittpunkte mit der x-Achse. Man kann Nullstellen berechnen mit anhand von vier Möglichkeiten: a) ausklammern, b) Mitternachtsformel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008660" }

  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 3 | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008521" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 4 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009558" }

  • Lineares Wachstum berechnen, Beispiel 2 | A.07.01

    Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben „y=m*x+b“, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008606" }

  • Mit Intervallschachtelung Nullstellen bestimmen | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009365" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 2 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009367" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 1 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009366" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 2 | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008552" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite